Abstract

The effectiveness of various forms of contextual information in a postprocessing system for detection and correction of errors in words is examined. Various algorithms utilizing context are considered, from a dictionary algorithm which has available the maximum amount of information, to a set of contextual algorithms utilizing positional binary n-gram statistics. The latter information differs from the usual n-gram letter statistics in that the probabilities are position-dependent and each is quantized to 1 or 0, depending upon whether or not it is nonzero. This type of information is extremely compact and the computation for error correction is orders of magnitude less than that required by the dictionary algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.