Abstract
This paper extends traditional dynamic adaptive streaming over HTTP (DASH) to efficiently exploit all available bands and licensing regimes in a given context. A novel objective quality-of-experience (QoE) metric is proposed to capture the most relevant factors that impact user perception during streaming sessions. Based on it, a QoE-driven adaptation strategy is devised to jointly select the best radio access technology (RAT) and quality for each video segment depending on the various components of the context. It relies first on fuzzy logic to estimate the QoE provided by each available RAT subject to the uncertainty level associated with DASH clients. Then, a fuzzy multiple attribute decision making (MADM) methodology is developed to combine the QoE estimates with the heterogeneous components of the context to assess the in-context suitability levels. The proposed approach is applied to adapt video streaming across available RATs in dense deployments for a set of Bronze and Gold subscriptions. The results reveal that the proposed strategy always assigns Gold clients to the well-regulated licensed band, while switches Bronze clients between licensed and unlicensed bands depending on the operating conditions. It strikes a balance between maximising video quality and reducing playback stalling, which significantly improves the perceived QoE compared to the traditional DASH approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.