Abstract
To better exploit the search logs, various click models have been proposed to extract implicit relevance feedback from user clicks. Most traditional click models are based on probability graphical models (PGMs) with manually designed dependencies. Recently, some researchers also adopt neural-based methods to improve the accuracy of click prediction. However, most of the existing click models only model user behavior in query level. As the previous iterations within the session may have an impact on the current search round, we can leverage these behavior signals to better model user behaviors. In this paper, we propose a novel neural- based Context-Aware Click Model (CACM) for Web search. CACM consists of a context-aware relevance estimator and an examination predictor. The relevance estimator utilizes session context infor- mation, i.e., the query sequence and clickthrough data, as well as the pre-trained embeddings learned from a session-flow graph to estimate the context-aware relevance of each search result. The examination predictor estimates the examination probability of each result. We further investigate several combination functions to integrate the context-aware relevance and examination probabil- ity into click prediction. Experiment results on a public Web search dataset show that CACM outperforms existing click models in both relevance estimation and click prediction tasks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.