Abstract

In this paper, we propose a context-sensitive technique for unsupervised change detection in multitemporal remote sensing images. This technique is based on a modified Hopfield neural network architecture designed to model spatial correlation between neighboring pixels of the difference image produced by comparing images acquired on the same area at different times. Each spatial position in the considered scene is represented by a neuron in the Hopfield network that is connected only to its neighboring units. These connections model the spatial correlation between neighboring pixels and are associated with a context-sensitive energy function that represents the overall status of the network. Change detection maps are obtained by iteratively updating the output status of the neurons until a minimum of the energy function is reached and the network assumes a stable state. A simple heuristic thresholding procedure is presented and adopted for initializing the network. The proposed change detection technique is unsupervised and distribution free. Experimental results carried out on two multispectral and multitemporal remote sensing images confirm the effectiveness of the proposed technique

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.