Abstract
Linking data by finding matching instances in different datasets requires considering many characteristics, such as structural heterogeneity, implicit knowledge, and URI (Uniform Resource Identifier)-oriented identification. The authors propose a context-independent approach to align Linked data through an alignment process based on the ontological model’s components and considering data’s multidimensionality. The researchers experimented with the proposed approach against two methods for aligning linked data in two datasets and evaluated precision, recall, and f-measure metrics. The authors also conducted a case study in a real scenario considering a Brazilian publication dataset on computers and education. This study’s results indicate that the proposed approach overcomes the other methods (regarding the precision, recall, and f-measure metrics), requiring less work when changing the dataset domain. This work’s main contributions include enabling real datasets to be semi-automatically linked, presenting an approach capable of calculating resource similarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Semantic Web and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.