Abstract
Highly dynamic real-time microblog systems have already published petabytes of real-time human sensor data in the form of status updates. However, the lack of user adoption of geo-based features per user or per post signals that the promise of microblog services as location-based sensing systems may have only limited reach and impact. Thus, in this article, we propose and evaluate a probabilistic framework for estimating a microblog user's location based purely on the content of the user's posts. Our framework can overcome the sparsity of geo-enabled features in these services and bring augmented scope and breadth to emerging location-based personalized information services. Three of the key features of the proposed approach are: (i) its reliance purely on publicly available content; (ii) a classification component for automatically identifying words in posts with a strong local geo-scope; and (iii) a lattice-based neighborhood smoothing model for refining a user's location estimate. On average we find that the location estimates converge quickly, placing 51% of users within 100 miles of their actual location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.