Abstract
Existing reconstruction methods for single photon emission computed tomography (SPECT) are most based on discrete models, leading to low accuracy in reconstruction. Reconstruction methods based on integral equation models (IEMs) with a higher order piecewise polynomial discretization on the pixel grid for SEPCT imaging were recently proposed to overcome the accuracy deficiency of the discrete models. Discretization of IEMs based on the pixel grid leads to a system of a large dimension, which may require higher computational costs to solve. We develop a SPECT reconstruction method which employs an IEM of the SPECT data acquisition process and discretizes it on a content-adaptive unstructured grid (CAUG) with the total variation (TV) regularization aiming at reducing computational costs of the integral equation method. Specifically, we design a CAUG of the image domain for the discretization of the IEM, and propose a TV regularization defined on the CAUG for the resulting ill-posed problem. We then apply a preconditioned fixed-point proximity algorithm to solve the resulting non-smooth optimization problem, and provide convergence analysis of the algorithm. Numerical experiments are presented to demonstrate the superiority of the proposed method over the competing methods in terms of suppressing noise, preserving edges and reducing computational costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Inverse Problems & Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.