Abstract

Since the early days of digital communication, hidden Markov models (HMMs) have now been also routinely used in speech recognition, processing of natural languages, images, and in bioinformatics. In an HMM $(X_i,Y_i)_{i\ge 1}$, observations $X_1,X_2,...$ are assumed to be conditionally independent given an ``explanatory'' Markov process $Y_1,Y_2,...$, which itself is not observed; moreover, the conditional distribution of $X_i$ depends solely on $Y_i$. Central to the theory and applications of HMM is the Viterbi algorithm to find {\em a maximum a posteriori} (MAP) estimate $q_{1:n}=(q_1,q_2,...,q_n)$ of $Y_{1:n}$ given observed data $x_{1:n}$. Maximum {\em a posteriori} paths are also known as Viterbi paths or alignments. Recently, attempts have been made to study the behavior of Viterbi alignments when $n\to \infty$. Thus, it has been shown that in some special cases a well-defined limiting Viterbi alignment exists. While innovative, these attempts have relied on rather strong assumptions and involved proofs which are existential. This work proves the existence of infinite Viterbi alignments in a more constructive manner and for a very general class of HMMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.