Abstract

Gaussian ARTMAP (GAM) is a supervised-learning adaptive resonance theory (ART) network that uses gaussian-defined receptive fields. Like other ART networks, GAM incrementally learns and constructs a representation of sufficient complexity to solve a problem it is trained on. GAM's representation is a gaussian mixture model of the input space, with learned mappings from the mixture components to output classes. We show a close relationship between GAM and the well-known expectation-maximization (EM) approach to mixture modeling. GAM outper forms an EM classification algorithm on three classification benchmarks, thereby demonstrating the advantage of the ART match criterion for regulating learning and the ARTMAP match tracking operation for incorporating environmental feedback in supervised learning situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.