Abstract
Graphical models have been widely applied to uncertain reasoning in knowledge‐based systems. For many of the problems tackled, a single graphical model is constructed before individual cases are presented and the model is used to reason about each new case. In this work, we consider a class of problems whose solution requires inference over a very large number of models that are impractical to construct a priori. We conduct a case study in the domain of vehicle monitoring and then generalize the approach taken. We show that the previously held negative belief on the applicability of graphical models to such problems is unjustified. We propose a set of techniques based on domain decomposition, model separation, model approximation, model compilation, and re‐analysis to meet the computational challenges imposed by the combinatorial explosion. Experimental results on vehicle monitoring demonstrated good performance at near‐real‐time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.