Abstract

AbstractIn this article we examine the natural interpretation of a ramified type hierarchy into Martin-Löf type theory with an infinite sequence of universes. It is shown that under this predicative interpretation some useful special cases of Russell’s reducibility axiom are valid, namely functional reducibility. This is sufficient to make the type hierarchy usable for development of constructive mathematical analysis in the style of Bishop. We present a ramified type theory suitable for this purpose. One may regard the results of this article as an alternative solution to the problem of the proliferation of levels of real numbers in Russell’s theory, which avoids impredicativity, but instead imposes constructive logic. The intuitionistic ramified type theory introduced here also suggests that there is a natural associated notion of predicative elementary topos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.