Abstract

SummaryWe generalize the matrix Kronecker product to tensors and propose the tensor Kronecker product singular value decomposition that decomposes a real k‐way tensor into a linear combination of tensor Kronecker products with an arbitrary number of d factors. We show how to construct , where each factor is also a k‐way tensor, thus including matrices (k=2) as a special case. This problem is readily solved by reshaping and permuting into a d‐way tensor, followed by a orthogonal polyadic decomposition. Moreover, we introduce the new notion of general symmetric tensors (encompassing symmetric, persymmetric, centrosymmetric, Toeplitz and Hankel tensors, etc.) and prove that when is structured then its factors will also inherit this structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call