Abstract

Group Divisible PBIBDs are important combinatorial structures with diverse applications. In this paper, we provided a construction technique for Group Divisible (v-1,k,0,1) PBIBDs. This was achieved by using techniques described in literature to construct Nim addition tables of order 2n, 2≤n≤5 and (k2,b,r,k,1)Resolvable BIBDs respectively. A “block cutting” procedure was thereafter used to generate corresponding Group Divisible (v-1,k,0,1) PBIBDs from the (k2,b,r,k,1)Resolvable BIBDs. These procedures were streamlined and implemented in MATLAB. The generated designs are regular with parameters(15,15,4,4,5,3,0,1);(63,63,8,8,9,7,0,1);(255,255,16,16,17,15,0,1) and (1023,1023,32,32,33,31,0,1). The MATLAB codes written are useful for generating the blocks of the designs which can be easily adapted and utilized in other relevant studies. Also, we have been able to establish a link between the game of Nim and Group Divisible (v-1,k,0,1) PBIBDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.