Abstract

A natural digraph analogue of the graph-theoretic concept of an `independent set' is that of an `acyclic set', namely a set of vertices not spanning a directed cycle. Hence a digraph analogue of a graph coloring is a decomposition of the vertex set into acyclic sets and we say a digraph is uniquely $n$-colorable when this decomposition is unique up to relabeling. It was shown probabilistically in [A. Harutyunyan et al., Uniquely $D$-colorable digraphs with large girth, Canad. J. Math., 64(6): 1310-1328, 2012] that there exist uniquely $n$-colorable digraphs with arbitrarily large girth. Here we give a construction of such digraphs and prove that they have circular chromatic number $n$. The graph-theoretic notion of `homomorphism' also gives rise to a digraph analogue. An acyclic homomorphism from a digraph $D$ to a digraph $H$ is a mapping $\varphi: V(D) \rightarrow V(H)$ such that $uv \in A(D)$ implies that either $\varphi(u)\varphi(v) \in A(H)$ or $\varphi(u)=\varphi(v)$, and all the `fibers' $\varphi^{-1}(v)$, for $v \in V(H)$, of $\varphi$ are acyclic. In this language, a core is a digraph $D$ for which there does not exist an acyclic homomorphism from $D$ to a proper subdigraph of itself. Here we prove some basic results about digraph cores and construct highly chromatic cores without short cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call