Abstract
We construct a complex analytic version of an equivariant cohomology theory which appeared in a paper of Rezk, and which is roughly modelled on the Borel-equivariant cohomology of the double free loop space. The construction is defined on finite, torus-equivariant CW complexes and takes values in coherent holomorphic sheaves over the moduli stack of complex elliptic curves. Our methods involve an inverse limit construction over all finite-dimensional subcomplexes of the double free loop space, following an analogous construction of Kitchloo for single free loop spaces. We show that, for any given complex elliptic curve $\mathcal {C}$, the fiber of our construction over $\mathcal {C}$ is isomorphic to Grojnowski's equivariant elliptic cohomology theory associated to $\mathcal {C}$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.