Abstract

In Kessler ( Appl. Comput. Harmonic Anal. 9 (2000), 146–165), a construction was given for a class of orthogonal compactly supported scaling vectors on R 2, called short scaling vectors, and their associated multiwavelets. The span of the translates of the scaling functions along a triangular lattice includes continuous piecewise linear functions on the lattice, although the scaling functions are fractal interpolation functions and possibly nondifferentiable. In this paper, a similar construction will be used to create biorthogonal scaling vectors and their associated multiwavelets. The additional freedom will allow for one of the dual spaces to consist entirely of the continuous piecewise linear functions on a uniform subdivision of the original triangular lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.