Abstract

Many network design problems arising in areas as diverse as VLSI circuit design, QoS routing, traffic engineering, and computational sustainability require clients to be connected to a facility under path-length constraints and budget limits. These problems can be modelled as Rooted Distance-Constrained Minimum Spanning-Tree Problem (RDCMST), which is NP-hard. An inherent feature of these networks is that they are vulnerable to a failure. Therefore, it is often important to ensure that all clients are connected to two or more facilities via edge-disjoint paths. We call this problem the Edge-disjoint RDCMST (ERDCMST). Previous works on RDCMST have focused on dedicated algorithms which are hard to extend with side constraints, and therefore these algorithms cannot be extended for solving ERDCMST. We present a constraint-based local search algorithm for which we present two efficient local move operators and an incremental way of maintaining objective function. Our local search algorithm can easily be extended and it is able to solve both problems. The effectiveness of our approach is demonstrated by experimenting with a set of problem instances taken from real-world passive optical network deployments in Ireland, the UK, and Italy. We compare our approach with existing exact and heuristic approaches. Results show that our approach is superior to both of the latter in terms of scalability and its anytime behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.