Abstract

In this paper, a constraint-stabilized numerical method is presented for the planar rigid multibody system with friction-affected translational joints, in which the sliders and the guides are treated as particles and bilateral constraints, respectively. The dynamical equations of the non-smooth system are obtained by using the first kind of Lagrange's equations and Baumgarte stabilization method. The normal forces of bilateral constraints are expressed by the Lagrange multipliers and described by complementarity condition, while frictional forces are characterized by a set-valued force law of the type of Coulomb's law for dry friction. Using event-driven scheme, the state transition problem of stick-slip and normal forces of bilateral constraints is formulated and solved as a horizontal linear complementarity problem (HLCP). Finally, the planar rigid multibody system with two translational joints is considered as a illustrative application example. The results obtained also show that the drift of constraints of the system remains bounded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.