Abstract

PurposeThe purpose of this paper is the need to build a novel approach that would allow flexible modeling and solving of food supply chain management (FSCM) problems. The models developed would use the data (data-driven modeling) as early as possible at the modeling phase, which would lead to a better and more realistic representation of the problems being modeled.Design/methodology/approachAn essential feature of the presented approach is its declarativeness. The use of a declarative approach that additionally includes constraint satisfaction problems and provides an opportunity of fast and easy modeling of constrains different in type and character. Implementation of the proposed approach was performed with the use of an original hybrid method in which constraint logic programming (CLP) and mathematical programming (MP) are integrated and transformation of a model is used as a presolving technique.FindingsThe proposed constraint-driven approach has proved to be extremely flexible and efficient. The findings obtained during part of experiments dedicated to efficiency were very interesting. The use of the constraint-driven approach has enabled finding a solution depending on the instance data up to 1,000 times faster than using the MP.Research limitations/implicationsDue to the limited use of exact methods for NP-hard problems, the future study should be to integrate the CLP with environments other than the MP. It is also possible, e.g., with metaheuristics like genetic algorithms, ant colony optimization, etc.Practical implicationsThere is a possibility of using the approach as a basis to build a decision support system for FSCM, simple integration with databases, enterprise resource planning systems, management information systems, etc.Originality/valueThe new constraint-driven approach to FSCM has been proposed. The proposed approach is an extension of the hybrid approach. Also, a new decision-making model of distribution and logistics for the food supply chain is built. A presolving technique for this model has been presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call