Abstract
In this paper, an optimal PID-like controller is proposed for a spacecraft attitude stabilization problem subject to continuous inequality constraints on the spacecraft angular velocity and control, as well as terminal constraints on the spacecraft attitude and angular velocity. The closed-loop stability is established using the Lyapunov stability theory. The constraint transcription method and a local smoothing technique are used to construct a smooth approximate function for each of the continuous inequality constraints on the angular velocity and control. Then, by using the concept of the penalty function, these approximate smooth functions are appended to the quadratic performance criterion forming an augmented cost function. Consequently, the constrained optimal control problem under the PID-like controller is approximated by a sequence of optimal parameter selection problems subject to only terminal constraints on the spacecraft attitudes. A reliable computational algorithm is derived for the tuning of the optimal PID-like control parameters. Finally, numerical simulations are carried out to illustrate the effectiveness of the methodology proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.