Abstract

Overall constraint violation functions are commonly used in multiobjective evolutionary algorithms (MOEAs) for handling constraints. Constraints could cause these algorithms stuck in two stagnation states: 1) since the feasible region of a multiobjective optimization problem can consist of several disconnected feasible subregions, the search can be easily trapped in a feasible subregion which does not contain all the global Pareto optimal solutions and 2) an overall constraint violation function may have many nonzero minimal points, it can make the search stuck in an unfeasible area. To address these two issues, this article proposes a strategy to detect whether or not the search is stuck in these two stagnation states and then escape from them. Our proposed detect-and-escape strategy uses the feasible ratio and the change rate of overall constraint violation to detect stagnation, and adjusts the weight of the constraint violation for guiding the search to escape from stagnation states. We develop and implement a decomposition-based constrained MOEA with this strategy. Extensive experiments on a number of benchmark problems demonstrate the competitiveness of our proposed algorithm when compared to five other state-of-the-art constrained evolutionary algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.