Abstract
Semi-supervised learning (SSL) focuses on the way to improve learning efficiency through the use of labeled and unlabeled samples concurrently. However, recent research indicates that the classification performance might be deteriorated by the unlabeled samples. Here, we proposed a novel graph-based semi-supervised algorithm combined with particle cooperation and competition, which can improve the model performance effectively by using unlabeled samples. First, for the purpose of reducing the generation of label noise, we used an efficient constrained graph construction approach to calculate the affinity matrix, which is capable of constructing a highly correlated similarity relationship between the graph and the samples. Then, we introduced a particle competition and cooperation mechanism into label propagation, which could detect and re-label misclassified samples dynamically, thus stopping the propagation of wrong labels and allowing the overall model to obtain better classification performance by using predicted labeled samples. Finally, we applied the proposed model into hyperspectral image classification. The experiments used three real hyperspectral datasets to verify and evaluate the performance of our proposal. From the obtained results on three public datasets, our proposal shows great hyperspectral image classification performance when compared to traditional graph-based SSL algorithms.
Highlights
With the efficient and rapid speed of information acquisition, more and more data are available in open source
We considered a graph-based semi-supervised problem where the usage of unlabeled samples might deteriorate the model performance in hyperspectral images (HSIs) classification
Several conclusions were summarized based on the experiments we performed
Summary
With the efficient and rapid speed of information acquisition, more and more data are available in open source. In real-world classification tasks, a large portion of samples in datasets are unlabeled, and obtaining their labels is costly and time-consuming. The way to fully utilize the unlabeled data and explore their potential value of unlabeled samples is a key issue in machine learning. SSL is capable of improving the learning performance by using both a large proportion of unlabeled samples and a handful of labeled samples, and proposed to solve the scarcity of labeled samples [1,2]. Various SSL algorithms have been proposed such as transductive support vector machines (TSVM) [3], co-training [4], label propagation algorithm (LPA) [5], mixmatch [6], fixmatch [7], etc. SSL is broadly applied to many areas in real-world tasks, for instance, object detection [8,9,10], remote sensing [11,12,13,14,15,16,17,18,19,20], and data mining [21,22]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.