Abstract

The decomposition of buckling modes of thin-walled members subjected to axial stresses is a topic of great practical interest which can be achieved using the generalised beam theory (GBT) or the constrained finite strip method (cFSM). However, the latter is not general enough to study prismatic members with arbitrary cross-sections and the objective of this paper is to extend the cFSM to allow the buckling modes decomposition for prismatic members with branches and/or closed parts. To define the combined GD buckling mode, two assumptions are used: (i) cylindrical plate bending and (ii) negligible in-plane transverse/shear strains. The corresponding constraint matrix, RGD, is derived in a simple and general way. The methodology used to separate the global and distortional modes is similar to that used in the original cFSM while the derivation of the constraint matrix for local modes remains identical. Some examples are considered and the pure buckling curves are compared to the conventional FSM results. The conclusion is that the new cFSM has successfully computed the GD and the L modes of these sections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.