Abstract

In this paper, we formulate a new tensor decomposition herein called constrained factor (CONFAC) decomposition. It consists in decomposing a third-order tensor into a triple sum of rank-one tensor factors, where interactions involving the components of different tensor factors are allowed. The interaction pattern is controlled by three constraint matrices the columns of which are canonical vectors. Each constraint matrix is associated with a given dimension, or mode, of the tensor. The explicit use of these constraint matrices provides degrees of freedom to the CONFAC decomposition for modeling tensor signals with constrained structures which cannot be handled with the standard parallel factor (PARAFAC) decomposition. The uniqueness of this decomposition is discussed and an application to multiple-input multiple-output (MIMO) antenna systems is presented. A new transmission structure is proposed, the core of which consists of a precoder tensor decomposed as a function of the CONFAC constraint matrices. By adjusting the precoder constraint matrices, we can control the allocation of data streams and spreading codes to transmit antennas. Based on a CONFAC model of the received signal, blind symbol/code/channel recovery is possible using the alternating least squares algorithm. For illustrating this application, we evaluate the bit-error-rate (BER) performance for some configurations of the precoder constraint matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.