Abstract

The mechanical behavior of Ti-6Al-4V produced by additive manufacturing processes is assessed as based on a model derived from the Kocks–Mecking relationship. A constitutive parameter cb is derived from a linear Kocks–Mecking relationship for the microstructure that is characteristic of the work hardening behavior. The formulation for cb is determined by considering the plastic strain between the strengths at the proportional limit and the plastic instability. In this way, the model accommodates the variation in work hardening behavior observed when evaluating material as produced and tested along different orientations. The modeling approach is presented and evaluated for the case of Ti-6Al-4V additively manufactured materials as tested under quasi-static uniaxial tension. It is found that different test specimen orientations, along with postbuild heat treatments, produce a change in the microstructure and plasticity behavior which can be accounted for in the corresponding change of the cb values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.