Abstract

Constitutive equations are derived for the viscoelastoplastic response of glassy polymers under isothermal loading. The model is based on a concept of adaptive links (a version of the theory of temporary networks), where active chains are modeled as elastoplastic elements. Breakage and reformation of adaptive links reflect the viscoelastic behavior, whereas irreversible deformations of links are responsible for plastic effects. Stress–strain relations in finite viscoelastoplasticity are developed with the use of the laws of thermodynamics. These relationships are essentially simplified at small strains, when geometrical and physical nonlinearities are neglected. The model is applied to the analysis of uniaxial extension of a viscoelastoplastic bar. Fair agreement is demonstrated between experimental data for polycarbonate and poly(methyl methacrylate) at elevated temperatures and results of numerical simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.