Abstract

This paper describes the development of a constitutive model for predicting rock damage and fragment size distribution due to explosive loading. The model is based on continuum mechanics and statistical fracture mechanics, assuming the rock medium is an isotropic, continuous and homogeneous material with pre-existing microcracks. In the model, damage to the rock medium is defined as the probability of fracture at a given crack density which is obtained by integrating a crack density function over time. The material constants used in the crack density function are determined according to their physical meaning. The minimum damage value at which the fragments may be formed is set by assuming that there is at least one crack per unit volume. Fragment size distribution is achieved considering the equilibrium between kinetic energy and surface energy. The simulation results are in good accordance with the theory of explosive energy partitioning in a rock medium. As a result, the damage zone induced by the shock wave and stress waves, once established, remains stable. The model has been calibrated by field crater blasting and small scale bench blasting tests.This paper describes the development of a constitutive model for predicting rock damage and fragment size distribution due to explosive loading. The model is based on continuum mechanics and statistical fracture mechanics, assuming the rock medium is an isotropic, continuous and homogeneous material with pre-existing microcracks. In the model, damage to the rock medium is defined as the probability of fracture at a given crack density which is obtained by integrating a crack density function over time. The material constants used in the crack density function are determined according to their physical meaning. The minimum damage value at which the fragments may be formed is set by assuming that there is at least one crack per unit volume. Fragment size distribution is achieved considering the equilibrium between kinetic energy and surface energy. The simulation results are in good accordance with the theory of explosive energy partitioning in a rock medium. As a result, the damage zone induced by the shoc...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call