Abstract
We develop a new finite deformation constitutive model for metallic glass within the framework of irreversible nonequilibrium thermodynamics. To consider the intrinsically out-of-equilibrium characteristics of metallic glass, its total internal energy is divided into two weakly coupled configurational and kinetic subsystems, and configurational temperature coupling with configurational degrees of freedom is introduced as a thermodynamic state variable to characterize the evolution of the disordered structure. Furthermore, the classical shear transformation zone theory is extended by reasonably considering the reverse shear transformation as a form of the relaxation of the strain field, which is stored in the elastic matrix and produced by the constraint of the matrix on shear transformation. With the help of the finite element implementation for the new model, the effectiveness of the proposed model is validated by comparing the modeling stress–strain responses of the macroscopic deformations under different temperatures and strain rates with the experimental results, and the utility of the model for predicting the shear banding behavior of metallic glasses is examined as well. The results therefore show that the constructed constitutive model can not only effectively predict the deformations of metallic glass under different ambient temperatures and applied strain rates, but also reasonably explain the mechanisms of deformation mode evolution and shear band formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.