Abstract

This paper proposes a new constitutive model to describe the dynamic plasticity of FCC metals using the thermal activation mechanism of dislocation motion. In the model development, the constitutive parameters were directly linked with the characteristics of microstructures of materials. As an example of its application, the model was used to describe the behavior of OFHC copper. To determine the globally optimized parameters of the constitutive model for OFHC copper, an improved multi-variable optimization method of constrained nonlinear programming was used based on the flow stress of the material measured experimentally. A comparison with some models and experimental data in the literature shows that the new model is simple to apply and is much better in terms of its prediction accuracy. It was shown that compared with the MTS model the new constitutive equation is explicit and can be easily embedded into a computational code of material dynamics; while compared with the Zerilli–Armstrong and Johnson–Cook models the new one reflects more precisely experimental observations. It was concluded that the new model is applicable to a wide range of problems with temperature variation from 77 K to 1096 K, strain rates ranging from 10 −3 s −1 to 10 4 s −1, and strain as high as 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.