Abstract

AbstractIn generalized malleable scheduling, jobs can be allocated and processed simultaneously on multiple machines so as to reduce the overall makespan of the schedule. The required processing time for each job is determined by the joint processing speed of the allocated machines. We study the case that processing speeds are job-dependent \(M^\natural \)-concave functions and provide a constant-factor approximation for this setting, significantly expanding the realm of functions for which such an approximation is possible. Further, we explore the connection between malleable scheduling and the problem of fairly allocating items to a set of agents with distinct utility functions, devising a black-box reduction that allows to obtain resource-augmented approximation algorithms for the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call