Abstract
The accurate estimation of the predicted re-entry time of decaying space debris objects is very important for proper planning of mitigation strategies and hazard assessment. This paper highlights the implementation strategies adopted for the online reentry prediction using Kalman filter approach with constant gains with the states being the semi-major axis, eccentricity and ballistic coefficient and using the measurements of the apogee height and perigee height derived from the Two Line Elements provided by agencies like USSPACECOM. Only a very simple model is utilised for the orbit propagation and a basic feature of the present approach is that any unmodellable state and measurement errors can be accounted for by adjusting the Kalman gains which are chosen based on a suitable cost function. In this paper we provide the details of validating this approach by utilising three re-entries of debris objects, namely, US Sat. No. 25947, SROSS-C2 Satellite and COSMOS 1043 rocket body. These three objects re-entered the Earth's atmosphere on 4th March 2000, 12th July 2001 and 19th January 2002, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.