Abstract

We present a novel consistent singularity-free strain-based finite element formulation for the analysis of three-dimensional frame-like structures. Our model is based on a geometrically exact finite-strain beam theory, quaternion parametrization of spatial rotations, assumption that the strain measures are constant along the length of the element and a proper choice of basis for the translational strain vector representation. As it is common for strain-based elements, the present formulation does not suffer from shear locking. A comparison of our results with the results from the literature and a commercial finite element analysis software demonstrates the advantages of the proposed formulation, especially when the structure is subjected to larger shear deformations. This stems from the fact that our model ensures a mathematically consistent updating procedure for all the quantities describing the beam. This aspect is often overlooked, since most of the numerical cases from other studies on this topic engage rather small-shear strains for which the consistent update is not crucial as the number of elements is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.