Abstract
In this paper we propose a nonparametric kernel-based model specification test that can be used when the regression model contains both discrete and continuous regressors. We employ discrete variable kernel functions and we smooth both the discrete and continuous regressors using least squares cross-validation (CV) methods. The test statistic is shown to have an asymptotic normal null distribution. We also prove the validity of using the wild bootstrap method to approximate the null distribution of the test statistic, the bootstrap being our preferred method for obtaining the null distribution in practice. Simulations show that the proposed test has significant power advantages over conventional kernel tests which rely upon frequency-based nonparametric estimators that require sample splitting to handle the presence of discrete regressors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.