Abstract

ABSTRACT Rolling contact is an important aspect in tire design, and reliable numerical simulations are required in order to improve the tire layout, performance, and safety. This includes the consideration of as many significant characteristics of the materials as possible. An example is found in the nonlinear and inelastic properties of the rubber compounds. For numerical simulations of tires, steady state rolling is an efficient alternative to standard transient analyses, and this work makes use of an Arbitrary Lagrangian Eulerian (ALE) formulation for the computation of the inertia contribution. Since the reference configuration is neither attached to the material nor fixed in space, handling history variables of inelastic materials becomes a complex task. A standard viscoelastic material approach is implemented. In the inelastic steady state rolling case, one location in the cross-section depends on all material locations on its circumferential ring. A consistent linearization is formulated taking into account the contribution of all finite elements connected in the hoop direction. As an outcome of this approach, the number of nonzero values in the general stiffness matrix increases, producing a more populated matrix that has to be solved. This implementation is done in the commercial finite element code ANSYS. Numerical results confirm the reliability and capabilities of the linearization for the steady state viscoelastic material formulation. A discussion on the results obtained, important remarks, and an outlook on further research conclude this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.