Abstract

A co-rotational total Lagrangian finite element formulation for the geometrically nonlinear dynamic analysis of spatial Euler beam with large rotations but small strain, is presented. The nodal coordinates, displacements, rotations, velocities, accelerations, and the equations of motion of the structure are defined in a fixed global set of coordinates. The beam element has two nodes with six degrees of freedom per node. The element nodal forces are conventional forces and moments. The kinematics of beam element are defined in terms of element coordinates, which are constructed at the current configuration of the beam element. Both the element deformation nodal forces and inertia nodal forces are systematically derived by consistent linearization of the fully geometrically nonlinear beam theory using the d'Alembert principle and the virtual work principle in the current element coordinates. An incremental-iterative method based on the Newmark direct integration method and the Newton—Raphson method is employed here for the solution of the nonlinear equations of motion. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.