Abstract

The assembly and activation of the spliceosome rely upon the phosphorylation of an essential family of splicing factors known as the serine-arginine (SR) proteins. Although it has been demonstrated recently that two enzyme families, the SR protein kinases (SRPKs) and the Cdc2-like kinases (CLKs), can function as a complex to efficiently phosphorylate these SR proteins in the nucleus, the molecular features involved in such a connection are unknown. In this study, we identified a group of conserved residues in the large lobe of SRPK1 that interact with the N terminus of CLK1 stabilizing the SRPK1-CLK1 complex. Mutations in this motif not only disrupt formation of the kinase-kinase complex but also impair SRPK1-dependent release of the phospho-SR protein from CLK1. The binding motif potently up-regulates CLK1-specific phosphorylation sites, enhances SR protein diffusion from nuclear speckles, and impacts the alternative splicing of several target genes. These results indicate that CLK1 binds a conserved, electronegative surface on SRPK1, thereby controlling SR protein phosphorylation levels for enhanced subnuclear trafficking and alternative splicing regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call