Abstract

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells1–4. The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses5,6. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor7,8. It catalyzes the synthesis of cyclic GMP-AMP (cGAMP)9–12, which stimulates the induction of type I interferons (IFN-Is) through the STING-TBK1-IRF-3 signaling axis13–15. Stimulator of interferon genes (STING) oligomerizes upon cGAMP binding, leading to the recruitment and activation of tank-binding kinase 1 (TBK1)8,16. Interferon regulatory factor 3 (IRF-3) is then recruited to the signaling complex and activated by TBK18,17–20. Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of IFN-Is21. However, the precise mechanisms governing STING activation by cGAMP and subsequent TBK1 activation by STING remained poorly understood. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for IFN-β induction upon cGAMP stimulation. Moreover, we show that full-length STING oligomerizes upon cGAMP binding and highlight this as an essential step in the activation of STING-mediated signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.