Abstract

In animals, microRNAs are amongst the primary non-coding RNAs involved in regulating the gene expression of a cell. Most mRNAs in a cell are targeted by one or many miRNAs. Although several mechanisms can be attributed to the degradation of miRNA and mRNA within a cell, but the involvement of autophagy in the clearance of miRNA and its target mRNA is not known. We discover a leucine-responsive axis in blood cell progenitors that can mediate an autophagy-directed degradation of miRNA-bound mRNA in Drosophila melanogaster and Homo sapiens. This previously unknown miRNA clearance axis is activated upon amino acid deprivation that can traffic miRNA-mRNA-loaded Argonaute for autophagic degradation in a p62-dependent manner. Thus, our research not only reports a novel axis that can address the turnover of a catalytically active miRISC but also elucidates a slicer-independent mechanism through which autophagy can selectively initiate the clearance of target mRNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.