Abstract

The spindle assembly checkpoint (SAC) ensures that sister chromatids do not separate until all chromosomes are attached to spindle microtubules and bi-oriented. Spindle checkpoint proteins, including Mad1, Mad2, Mad3 (BubR1), Bub1, Bub3, and Mph1 (Mps1), are recruited to unattached and/or tensionless kinetochores. SAC activation catalyzes the conversion of soluble Mad2 (O-Mad2) into a form (C-Mad2) that binds Cdc20, BubR1, and Bub3 to form the mitotic checkpoint complex (MCC), a potent inhibitor of the anaphase-promoting complex (APC/C). SAC silencing de-represses Cdc20-APC/C activity allowing poly-ubiquitination of Securin and Cyclin B, leading to the dissolution of sister chromatids and anaphase onset [1]. Understanding how microtubule interaction at kinetochores influences the timing of anaphase requires an understanding of how spindle checkpoint protein interaction with the kinetochore influences spindle checkpoint signaling. We, and others, recently showed that Mph1 (Mps1) phosphorylates multiple conserved MELT motifs in the Spc7 (Spc105/KNL1) protein to recruit Bub1, Bub3, and Mad3 (BubR1) to kinetochores [2, 3, 4]. In budding yeast, Mps1 phosphorylation of a central non-catalytic region of Bub1 promotes its association with the Mad1-Mad2 complex, although this association has not yet been detected in other organisms [5]. Here we report that multisite binding of Bub3 to the Spc7 MELT array toggles the spindle checkpoint switch by permitting Mph1 (Mps1)-dependent interaction of Bub1 with Mad1-Mad2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.