Abstract

Malaria parasites are transmitted by mosquitoes and a substantial part of the parasite's complex life cycle takes place inside the insect. Parasite transmission starts with the uptake of parasite stages called gametocytes from the vertebrate host with the blood meal of a female vector mosquito, completing several weeks later with the injection of parasite stages called sporozoites into the vertebrate host by mosquito bite. The sporozoites form in their thousands inside ookinete-derived oocysts situated on the abluminal side of the mosquito midgut epithelium by a process of cell division known as sporogony. After their formation, sporozoites egress from the oocyst into the haemolymph, invade the salivary glands and mature to become infective to the vertebrate. This MicroCommentary reviews recent reports describing a conserved plasma membrane-associated protein of Plasmodium berghei, PBANKA_1422900, and its role in maintaining the shape and structural integrity of sporozoites in salivary glands and during inoculation into the vertebrate host. Combined results from three separate studies provide mechanistic insights into how this protein achieves structural maintenance of the sporozoite, and how in turn this promotes the sporozoite's ability to overcome several physical obstacles and allow it to establish infection in the vertebrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call