Abstract
Replication factor C (RF-C), a complex of five polypeptides, is essential for cell-free SV40 origin-dependent DNA replication and viability in yeast. The cDNA encoding the large subunit of human RF-C (RF-Cp145) was cloned in a Southwestern screen. Using deletion mutants of RF-Cp145 we have mapped the DNA binding domain of RF-Cp145 to amino acid residues 369-480. This domain is conserved among both prokaryotic DNA ligases and eukaryotic poly(ADP-ribose) polymerases and is absent in other subunits of RF-C. The PCNA binding domain maps to amino acid residues 481-728 and is conserved in all five subunits of RF-C. The PCNA binding domain of RF-Cp145 inhibits several functions of RF-C, such as: (i) in vitro DNA replication of SV40 origin-containing DNA; (ii) RF-C-dependent loading of PCNA onto DNA; and (iii) RF-C-dependent DNA elongation. The PCNA binding domain of RF-Cp145 localizes to the nucleus and inhibits DNA synthesis in transfected mammalian cells. In contrast, the DNA binding domain of RF-Cp145 does not inhibit DNA synthesis in vitro or in vivo. We therefore conclude that amino acid residues 481-728 of human RF-Cp145 are critical and act as a dominant negative mutant of RF-C function in DNA replication in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.