Abstract

Asparagine-linked glycosylation (ALG, N-glycosylation) is one of the most prevalent protein modifications in eukaryotes and regulates protein folding, trafficking and function. Recently, we reported that the mutation of N154Q significantly led to the ER retention of brassinosteroids insensitive 1 (BRI1), the receptor of brassinosteroids (BRs). However, the mechanism of how the N154 site affects BRI1 structure is still not completely clear. In current study, we found that the removal of N154-glycan with S156A replacement significantly enhanced the ability of bri1 to complement bri1-301 mutant and plasma membrane localization compared with N154Q. In addition, the various mutations on N154 site resulted in bri1 retention in the ER, except for N154D. The 3D modeling suggested that there existed polar contacts around N154 site and the mutations not only destroyed the addition of N-glycan on the site, but also led to the disorder of hydrogen bonds formation. The sequence analysis showed that the N275 shared more similarity with N154 site and the removal of N275-glycan further enhanced the retention of bri1 carrying S156A mutation in the ER. Our results showed that N154 was special and essential for maintaining BRI1 structure and explored the role of those residues and key N-glycans lying in the LRR inner surface on protein conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.