Abstract
This paper presents a novel SPH scheme for modelling incompressible and divergence-free flow with a free surface (IDFSPH) associated with semi-analytical wall boundary conditions. In line with the projection method, the velocity field is decoupled from the pressure field in the momentum equation. A Poisson equation, serving as the pressure solver, is obtained by which pressure field is decoupled completely from the velocity field. In particular, an exact projection scheme is deployed to fulfil the requirement of the divergence-free velocity field. The condition of incompressibility is satisfied by iteratively updating the density field till the convergence. The two-equation k–ε model is employed to describe the turbulence effects in Newtonian flows. It is shown that the discretised SPH schemes have the feature of both linear and angular momentum conservations. The semi-analytical wall method implements the appropriate integrals to evaluate the boundary contributions to the mass and momentum equations. In comparison to the boundary particle methods, it can greatly enhance the feasibility and efficiency with the complex geometries. The algorithm presented within this paper is applied to several academic test cases for which either analytical results or simulations with other methods are available. The comparisons verify that this scheme is provided with convincing efficiency and extensive applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.