Abstract

A recently developed conservative level set model, coupled with the Navier-Stokes equations, was invoked to simulate non-spherical droplet impact in three dimensions. The advection term in the conservative level set model was tackled using the traditional central difference scheme on a half-staggered grid. The pressure velocity coupling was decoupled using the projection method. The inhouse code was written in Fortran and was run with the aid of the shared memory parallelism, OpenMP. Before conducting extensive simulations, the model was tested on meshes of varied resolutions and validated against experimental works, with satisfyingly qualitative and quantitative agreement obtained. The model was then employed to predict the impact and splashing dynamics of non-spherical droplets, with the focus on the effect of the aspect ratio. An empirical correlation of the maximum spread factor was proposed. Besides, the number of satellite droplets when splashing occurs was in reasonable agreement with a theoretical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.