Abstract
In this article, we propose a novel conservative diffuse-interface method for the simulation of immiscible compressible two-phase flows. The proposed method discretely conserves the mass of each phase, momentum and total energy of the system. We use the baseline five-equation model and propose interface-regularization (diffusion–sharpening) terms in such a way that the resulting model maintains the conservative property of the underlying baseline model; and lets us use a central-difference scheme for the discretization of all the operators in the model, which leads to a non-dissipative implementation that is crucial for the simulation of turbulent flows and acoustics. Furthermore, the provable strengths of the proposed model are: (a) the model maintains the boundedness property of the volume fraction field, which is a physical realizability requirement for the simulation of two-phase flows, (b) the proposed model is such that the transport of volume fraction field inherently satisfies the total-variation-diminishing property without having to add any flux limiters that destroy the non-dissipative nature of the scheme, (c) the proposed interface-regularization terms in the model do not spuriously contribute to the kinetic energy of the system and therefore do not affect the non-linear stability of the numerical simulation, and (d) the model is consistent with the second law of thermodynamics. Finally, we present numerical simulations using the model and assess (a) the accuracy of evolution of the interface shape, (b) implementation of surface tension effects, (c) propagation of acoustics and their interaction with material interfaces, (d) the accuracy and robustness of the numerical scheme for simulation of complex high-Reynolds-number flows, and (e) performance and scalability of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.