Abstract
Information about which pairs of statements in a concurrent program can execute in parallel is important for optimizing and debugging programs, for detecting anomalies, and for improving the accuracy of data flow analysis. In this paper, we describe a new data flow algorithm that finds a conservative approximation of the set of all such pairs. We have carried out an initial comparison of the precision of our algorithm and that of the most precise of the earlier approaches, Masticola and Ryder's non-concurrency analysis [8], using a sample of 159 concurrent Ada programs that includes the collection assembled by Masticola and Ryder. For these examples, our algorithm was almost always more precise than non-concurrency analysis, in the sense that the set of pairs identified by our algorithm as possibly happening in parallel is a proper subset of the set identified by non-concurrency analysis. In 132 cases, we were able to use reachability analysis to determine exactly the set of pairs of statements that may happen in parallel. For these cases, there were a total of only 10 pairs identified by our algorithm that cannot actually happen in parallel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.