Abstract
Abstract A formulation is presented to model ionic conduction efficiently inside, i.e., across and along grain boundaries. Efficiency and accuracy are achieved by reducing it to a two-dimensional manifold while guaranteeing the conservation of mass and charge at the intersection of multiple grain boundaries. The formulation treats the electric field and the electric current as independent solution variables. We elaborate on the numerical challenges this formulation implies and compare the computed solution with results from an analytical solution by quantifying the convergence towards the exact solution. Towards the end of this work, the model is first applied to setups with extreme values of crucial parameters of grain boundaries to study the influence of the ionic conduction in the grain boundary on the overall battery cell voltage and, secondly, to a realistic microstructure to show the capabilities of the formulation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.