Abstract

We present a practical framework for ideal hyperelasticity in numerical relativity. For this purpose, we recast the formalism of Carter and Quintana as a set of Eulerian conservation laws in an arbitrary 3+1 split of spacetime. The resulting equations are presented as an extension of the standard Valencia formalism for a perfect fluid, with additional terms in the stress–energy tensor, plus a set of kinematic conservation laws that evolve a configuration gradient ψAi. We prove that the equations can be made symmetric hyperbolic by suitable constraint additions, at least in a neighbourhood of the unsheared state. We discuss the Newtonian limit of our formalism and its relation to a second formalism also used in Newtonian elasticity. We validate our framework by numerically solving a set of Riemann problems in Minkowski spacetime, as well as Newtonian ones from the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.