Abstract

Consensus reaching processes in group decision making attempt to reach a mutual agreement among a group of decision makers before making a common decision. Different consensus models have been proposed by different authors in the literature to facilitate consensus reaching processes. Classical models focus on solving group decision making problems where few decision makers participate. However, nowadays, societal and technological trends that demand the management of larger scales of decision makers, such as e-democracy and social networks, add a new requirement to the solution of consensus-based group decision making problems. Dealing with such large groups implies the need for mechanisms to detect decision makers’ noncooperative behaviors in consensus, which might bias the consensus reaching process. This paper presents a consensus model suitable to manage large scales of decision makers, which incorporates a fuzzy clustering-based scheme to detect and manage individual and subgroup noncooperative behaviors. The model is complemented with a visual analysis tool of the overall consensus reaching process based on self-organizing maps, which facilitates the monitoring of the process performance across the time. The consensus model presented is aimed to the solution of consensus processes involving large groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.