Abstract

In linguistic large-scale group decision making (LSGDM), it is often necessary to achieve a consensus. Particularly, when computing with words and linguistic decision, we must keep in mind that words mean different things to different people. Therefore, to represent the specific semantics of each individual, we need to consider the personalized individual semantics (PIS) model in linguistic LSGDM. In this paper, we propose a consensus model based on PIS for LSGDM. Specifically, a PIS process to obtain the individual semantics of linguistic terms with linguistic preference relations is introduced. A consensus process based on PIS, including the consensus measure and feedback recommendation phases, is proposed to improve the willingness of decision makers who follow the suggestions to revise their preferences in order to achieve a consensus in linguistic LSGDM problems. The consensus measure defines two opposing consensus groups with respective acceptable and unacceptable consensus. In the feedback recommendation phase, a PIS-based clustering method to get decision makers with similar individual semantics is proposed. Recommendation rules design a feedback for decision makers with unacceptable consensus, finding suitable moderators from the decision makers with acceptable consensus based on cluster proximity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.